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Turbulent flow and heat transfer in pipes 
with buoyancy effects 

By A. M. ABDELMEGUID AND D. B. SPALDING 
Imperial College of Science and Technology, Mechanical Engineering 

Department, Exhibition Road, London SW7 2BX 

(Received 4 November 1977 and in revised form 8 December 1978) 

A finite-difference procedure is employed to predict the turbulent flow and heat 
transfer in horizontal, inclined and vertical pipes when influenced by buoyancy. The 
flow is treated as parabolic; and the turbulence model used involves the solution of 
two differential equations, one for the kinetic energy of turbulence and the other for 
its dissipation rate. Results are presented for the velocity and temperature fields, and 
the associated flow-resistance and heat-transfer coefficients. The predictions for 
horizontal and vertical pipes have been compared with the available experimental 
results, and the agreement obtained is good. 
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1. Introduction 
1.1. The problem &ered 

The flow and heat-transfer characteristics of turbulent pipe flow are affected by the 
presence of gravity forces; at moderate Reynolds numbers and high Grashof numbers, 
there occur considerable distortion of velocity and temperature profiles, and changes 
in the heat-transfer and hydrodynamic resistances. The character of these changes are 
affected by the inclination of the pipe. For horizontal pipes, the gravity force is 
perpendicular to the main flow direction and operates on the cross-stream flow; then 
the flow is three-dimensional. For vertical pipes, the gravity force is aligned with the 
pipe axis, so that axial symmetry is preserved. For inclined pipes, the gravity force 
acts in both the main-flow and the c2oss-stream-flow directions. 

The present paper demonstrates and tests a means of computing the velocity and 
temperature fields, and the associated flow-resistance and heat-transfer coefficients, in 
pipe flows with appreciable buoyancy effects. The situation of fully-developed flow is 
considered for inclined pipes, while both the developing and fully-developed regions 
are considered for vertical and horizontal pipes. 

A ,  M .  Abdelmeguid and D.  B. Spalding 

1.2. Previous work 
(a) Horizontal pipes. The literature on buoyancy-influenced flow and heat transfer 

in horizontal pipes is limited. Polyakov (1974) presented an analysis for the develop- 
ment of a secondary free-convection current in forced turbulent flow with weak 
buoyancy, i.e. a t  low Grashof numbers. In this analysis, he assumed that buoyancy 
forces do not affect turbulent-transfer coefficients. Skiadaressis & Spalding (1977) 
presented a finite-difference procedure for the prediction of such flow phenomena, 
allowing for the associated changes in the turbulent transfer properties; their pre- 
dictions were in good agreement with experimental data. Petukhov et al. (1974) 
presented experimental data for the local heat transfer, and for the fields of axial 
velocity and temperature, for air. More recently, an experimental study, also con- 
ducted by Petukhov et al. (1976), provided data for the distribution of fluctuation 
intensities of temperature and velocity. 

( b )  Vertical pipes. All past theoretical studies on vertical pipes have been confined 
to the situation of fully-developed flow. Ojalov et al. (1967) developed a numerical 
method for solving the corresponding conservation equations, based on the reduction 
of the basic conservation laws to three coupled, linear, integro-differential equations. 
Polyakov (1973) presented a theoretical study of the limits of the influence of the 
buoyancy forces on the velocity distribution, the temperature, and the heat-transfer 
and friction resistances. 

The measurements of Carr, Connor & Buhr (1973) and Buhr, Horsten & Carr (1974) 
represent a wide range of data for ascending flow in vertical pipes. They observed 
that, at high Grashof number, a limiting profile shape was approached, with the centre 
velocity well below the mean and the maximum occurring in the vicinity of the wall. 
Petukhov (1976) presented a wide range of experimental data, and concluded that the 
influence of gravitation on turbulent transfer is determined by two distinct effects: on 
the one hand, it changes the fields of the average values of velocity and temperature; 
this results in a change in the turbulent transfer characteristics. On the other hand, 
it has a direct effect on the motion of the turbulent elements of the fluid, thus strength- 
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ening or weakening the intensity of turbulent mixing. Depending on the conditions, 
both effects may be commensurable, or one of them may predominate. 

( c )  Inclined pipes. Little research has been done on inclined pipes, and, to the 
authors' knowledge, none in turbulent flows. 

1.3. Present contribution 
The present paper reports the results of a theoretical analysis of fluid flow and heat 
transfer in vertical, inclined and horizontal pipes with appreciable influence of 
buoyancy, and with uniform heat transfer through the walls. 

The aims of the present work are to extend and generalize the numerical method used 
by Skiadaressis & Spalding (1977) to inclined pipes, and so to provide insight into the 
physical processes involved, while simultaneously demonstrating the capabilities of 
the calculation procedure as a useful design tool. 

The main assumption is that downstream effects are not transmitted upstream; the 
assumption renders the finite-difference procedure fully parabolic. The numerical 
algorithm employed is that reported by Patankar & Spalding (1972); the effects of 
turbulence are represented by a ' two-equation model ' (Launder & Spalding 1974), 
in which differential equations are solved for the turbulence energy and for its dis- 
sipation rate. The velocity and temperature fields, as well as the heat-transfer and 
flow-resistance coefficients, have been predicted both in the developing and the fully- 
developed regions, and for both vertical and horizontal pipes. Comparisons with 
experimental data for fully-developed longitudinal-velocity and temperature profiles, 
are presented for horizontal and vertical pipes. Comparison of heat-transfer coefficients 
with experimental data are presented also for horizontal pipes. 

2. Prediction procedure 

2.1. Governing differential equations 
The equations governing the present problem are those of continuity, momentum and 
energy. These equations, in cylindrical-polar co-ordinates, and in accordance with 
figure 1, take the following forms. 

Continuity : 

Longitudinal momentum : 

Radial momentum : 

(2.3) 
= - ?!? - pgp(T - T,,,) cos 0 cos a + - 1 8  [- (r~,.,.) + A ( T , . ~ ) ]  - Toe r. 

ar r ar 
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Horizontal 

FIGURE 1. The geometry considered. 

Angular momentum : 

=-A!!!! +pg ,8 (T-T , , , ) s in8~osa+-[ - - - ( r%~, )+~] .  1 1 8  (2.4) 
T a8 r r ar 

Therml energy: 

In  these equations u, v and w represent the velocity components in the 8, r and z 
co-ordinate directions respectively. 6 is measured from the top of the pipe. p repre- 
sents the density, p is the pressure and /3 is the thermal expansion coefficient. The 
7’s represent components of the shear-stress tensor and are expressible in terms of the 
velocity gradients and an effective viscosity, which varies in the field. J’s represent 
components of heat-flux and are expressible in terms of the temperature gradients 
and an effective heat diffusivity . 

The above equations have been reduced from the general three-dimensional form 
to that shown by use of the assumptions stated below: 

(i) The flow is assumed to be of the boundary-layer type. This implies that neither 
momentum nor heat is transferred by molecular or turbulent mixing in the longi- 
tudinal direction. 

(ii) A space-average pressure, p ,  is supposed to prevail at  each cross-section in the 
longitudinal momentum equation; whereas the pressure variations with r and 8 are 
allowed to influence the other two momentum equations. This ‘pressure uncoupling’ 
is a necessity, legitimate for parabolic flows, if a marching-integration procedure is 
to be used. 

(iii) The viscous dissipation is omitted from the energy equation, because the 
velocities in question are low. 

(iv) Only small variations in density occur, due to temperature differences; and the 
Boussinesq approximation prevails. In ( 2 4 ,  T,,, represents a reference temperature 
in the field. 

2.2. Turbulence model 
The effective viscosity, ,ueii, is calculated from a two-equation turbulence model 
(Launder & Spalding 1974). The governing differential equations for turbulent kinetic 
energy k and its dissipation rate E are: 
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Kinetic energy of turbulence, 

- - (prvk)+ l a  --(puk)+ l a  - ( p w k ) =  a --% l a  [ rr,- 3 +-- :,aO[ rk- y + G - P € ;  (2.6) r ar r ae az 

Dissipation rate, 

where 

G = pt [ 2 {(;as iau + ;) v + ( )'} + ( r a u  (--) +: $I2 + { El2 + ( :$}2]. (2.8) 

The expression for perf is 

P eii = plaminar + Cp ~ k ' / € .  
The turbulent viscosity ,ut is calculated from the relationship 

pUt = Cppk2/". (2.10) 

The model contains five empirical constants which are assigned the following com- 
monly used values: 

C, = 0.09, C, = 1.44, C, = 1.92, Pr, = 1.0, Pr, = 1.3. 

A special but conventional treatment is adopted for the near-wall regions, since the 
variations of the flow properties are much steeper in this region; the practices adopted 
here are the same as described by Launder & Spalding (1974), with appropriate 
extensions to account for the three-dimensional nature of the flow. No special terms 
are included in the equations for k and to account for the interaction of buoyancy 
and turbulence, despite the conclusion of Petukhov (1976) mentioned above. Com- 
putational tests showed that the inclusion of these terms has no significant effect on 
flow or heat transfer. 

2.3. Solution procedure 

A finite-difference forward-marching procedure is applied to solve the equations 
governing the flow and heat transfer. The finite-difference equations are solved by 
marching from an upstream station, where the flow conditions are known, to successive 
stations downstream. The procedure thus computes the flow section by section along 
the pipe length. A full account of the procedure is given by Patankar & Spalding (1973), 
its main feature is that the downstream pressure field is first guessed, so as to lead to a 
preliminary velocity field, satisfying the momentum equations but not the continuity 
equation, then corrections are made in a systematic manner until all the equations are 
satisfied. No modifications were needed or made to the solution procedure. 

2.4. Computational details 

( a )  The computer program. The differential equations described in 5 2.1, together 
with the Patankar-Spalding (1972) method, were embodied in the computer code 
S T A B L E R  (Steady Three-dimensional Analysis of Boundary-Layer Equations Revised). 

(b)  The grid. Two different types of grid were used. For inclined and horizontal pipes, 
for which the flow is symmetrical about a vertical plane, computation was confined to 
half of the pipe. A grid of 15 nodes in the radial direction and 11 nodes in the angular 
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FIGURE 3. Fully developed velocity profiles at different angular stations in horizontal 
pipes under considerable thermo-gravitational forces (Re = 25000, Gr = 1O'O). 

direction was employed. In the angular direction, a nearly uniform grid distribution 
was chosen; in the radial direction, more grid nodes were concentrated in the region 
close to the wall. 

For vertical pipes, the flow was axisymmetric and fewer grid nodes were needed 
in the circumferential direction. A 15 x 6 grid was employed, but, strictly speaking, 
a 15 x 1 grid was all that was needed. 

(c) Computational cost. An initial isothermal section of 20 diameters preceded the 
test section in all the predictions. 
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Approximately 400 sections were visited by the marching-integration process, in 
the passage from entry to full development. The computer time on a CDC 6600 
computer was of the order of 0.5 seconds per forward step. 

3. Results and discussion 
3.1. Horizontal pipes 

Velocity projles. Figure 2 presents fully developed longitudinal-velocity profiles, at  
a fixed angular position and at various Grashof numbers Or. Figure 3 shows such 
profiles at  various angular positions, for a fixed Gr. 

The development of the longitudinal-velocity contours with distance from the 
entry, at a typical Gr, is shown in figure 4. 

Pigure 5 presents a comparison of the predicted velocity profiles in the vertical 
and horizontal diametral planes, with experimental data by Petukhov et al. (1974), 
and Petukhov (1976). 

Temperature projiles. The temperature distributions in the cross-stream plane, are 
presented in figure 6. The figure also presents, for comparison, experimental data by 
Petukhov et al. (1974) and Petukhov (1976). 

In  figure 7, the development of Nusselt number, N u ,  is plotted with distance from 
the entry, at Gr equal 1.9 x lo9 at the top and bottom pipe generators. The figure also 
presents a comparison with the experimental data by Petukhov et al. (1974). 

Lliscussion. It can be seen from figures 2 and 6 that the longitudinal-velocity and 
temperature maximums are shifted from the centre-line, because of the increase in 
Gr. Figures 5 , 6  and 7 show that the agreement between measurements and predictions 
is good. 

3.2. Vertical pipes 

(a )  Ascending $ow. Figure 8 presents the development of the longitudinal-velocity 
profile with distance from the entry, at a fixed Grashof number. Figures 9 and 10 
present the fully developed longitudinal-velocity and turbulent-kinetic-energy 
profiles, for various Grashof numbers. Figure 11 presents the variation of friction 
factor, with Gr for constant Re; ft represents the friction factor for turbulent forced 
flow. 

Figure 12 presents the fully-developed temperature profiles for various Gr. In 
figure 13, the variation of Nu a t  various Gr is presented. 

It can be seen from figures 9 and 10 that the mean flow and the turbulent transfer 
are much affected by the value of Gr: for Gr less than a critical value, Gr, (here lo9), 
the effect of buoyancy on turbulence characteristics is modest, and its effect on the 
averaged flow can be neglected; for Gr greater than Gr,, buoyancy affects both the 
averaged flow and the turbulent transfer. 

Figure 9 shows also that the maximum velocity occurs in the vicinity of the wall; 
and, with increase of Gr, the maximum velocity near the wall increases in value and is 
located nearer to the wall. This is the same trend as is described by Carr et al. 
(1973). 

It can also be seen from figure 10 that the turbulent kinetic energy decreases with 
increase of Gr, until Gr, is reached, and then increases; aad it can be seen from 
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FIGURE 4. Axial-velocity contours in the thermal entry length in a horizontal pipe under con- 
siderabIe thermo-gravitationd forces (Re = 25000, Gr = 10'0; contours are for w/wmSx). (a) At 
the start of heating. ( b )  z / D  = 2.4. (c) z / D  = 13.75. (d )  z /D  = 25.74. (e) z / D  = 37.75. (f) Fully 
developed, z /D  = 49.75. 

figure 13, that, a t  first, the Nusselt number decreases when the heat input is increased, 
and then rises. The initial decrease in Nu accords with the initial decrease in the 
turbulent kinetic energy; the subsequent increase in Nu is due to the buoyancy forces 
becoming dominant on both the averaged flow and the turbulent transfer. 

Figures 14 and 15 compare the predictions with the experimental data of Bukr 
et al. (1974)' with mercury as a working fluid. In  the predictions, special attention 
had to be given to the so-called 'wall function'; the treatment adopted was that of 
El Hadidy & Spalding (1978, unpublished work). Agreement between measurements 
and predictions is satisfactory. 

( b )  Descending $ow. Figures 16 and 17 present the fully developed longitudinal- 
velocity and turbulent-kinetic-energy profiles for various Grashof numbers. Figure 
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Y I F o  
FIGURE 5. Velocity profiles compared with Petukhov etal .  (1974) and Petukhov (1976). (Predicted, 
experimental) results for the vertical-diametral plane: (----, O), Re = 52000, Gr = lo0; 
(----, O ) ,  R e  = 26000, Gr = 7.7 x 108. Results for the horizontal-diametral plane: (-, +), 
Re = 62000, Gr = lo0; (---, .),Re = 26000, Gr = 7.7 x 108. 
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FIGURE 9 FIGURE 10 
FIQURE 9. Variation of axial-velocity profile with the heat input for an ascending air in a vertical 
pipe (Re = 25 000). 

FIGURE 10. Variation of ths kinetic energy of turbulence with the heat input (Re =. 25000). 
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Gr 

FIGURE 11. Friction factor variation with heat input (ascending flow). 
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FIGURE 16. Comparison with the data of Buhr et al. (1974) of temperature proflea. (Experimental, 
predicted)reaults:( x ,--), Re = 61000, Gr = 1.11 x lo8; (n,---), Re = 61600, Br= 6.88 x 
10’; ( A ,  ---- ), Re = 62400, ar = 8.76 x lo8; (0,  -), Re = 66000, ar = 1.63 x 109. 
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FIQURE 20. Variation of Nusselt number with heat input in a 
descending flow of air (Re = 26 000). 
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FIGURE 21. Variation of axial-velocity profile with the tube inclination angle 
(view in the inclined diametral plane; Re = 25000, ch. = lolo). 

18 presents the variation of friction factor, with Gr, for constant Re. Figure 19 shows 
the fully-developed temperature profiles at  various Gr; figure 20 presents the variation 
of Nu with Gr. It can be seen from figure 16 that the maximum velocity increases with 
the increase in Gr, and the velocity profile become8 fuller. It can also be seen that 
the influence of buoyancy on the turbulent transfer considerably exceeds its effect on 
the averaged flow. No experimental data are available for verification of these pre- 
dictions. 

3.3.  Inclined pipes 

The predictions made for inclined pipes are for a fully developed, ascending flow at 
Re = 25 000, Gr = 10'0. No experimental data are available for comparison. 

Figure 21 presents the variation of the longitudinal-velocity profiles, in the inclined 
diametral plane, with pipe-inclination angle. Figure 22 presents the corresponding 
longitudinal-velocity profiles in the vertical diametral plane. Figure 23 shows the 
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FIQWRE 22. Variation of the axial-velocity profiles with the tube inclination 
angles (view in the vertical-diametral plane; C?r = 1O1O, Re = 25000). 

variation of the corresponding longitudinal-velocity contours. Figure 24 presents the 
distributions of N u  on the pipe periphery, at various tube-inclination angles. Figure 
25 presents the variation of the average N u  number, based on the average wall 
temperature, at various tube angles. It can be seen that there exists an inclination 
angle for which the averaged N u  number has a maximum value. 

4. Conclusions 

Numerical predictions of flow and heat transfer in horizontal, inclined and vertical 
pipes with appreciable buoyancy influences, and with uniform heat flux at the wall, 
have been performed by means of a finite-difference forward-marching procedure. The 
following were found to be true. 
(a)  For horizontal pipes: 

which increases with Grashof number. 

( b )  For vertical pipes : 
(1) Ascendingflow 

(i) For Gr less than some critical value, Gr,, the effect of buoyancy on turbulence 
is modest; and its effect on the averaged flow can be neglected. 

(ii) For Gr greater than Gr,, the buoyancy forces affect both the averaged flow and 
the turbulent transfer. 

(iii) For Gr greater than Gr,, a minimum velocity occurs a t  the centre-line of the 
pipe, and a maximum velocity occurs somewhere between the wall and the pipe axis; 
with increase of Gr the minimum velocity located at  the centre-line decreases, and the 
maximum velocity near the wall increases and approaches the wall. 

(iv) The Nusselt number decreases first with an increase in Gr until Gr, is reached; 
then it starts to increase monotonically. 

(v) The results are in good agreement with available measurements. 

(i) The longitudinal velocity maximum shifts towards the pipe bottom to an extent 

(ii) The results are in agreement with available measurements. 



398 A .  M .  Abdelmeguid and D. B.  Spalding 

FIGURE 23. The variation of axial-velocity contours with pipe inclination (ascending flow; 
Qr = 10'0, Re = 25000). (a) a = O", horizontal. ( b )  a = 10". (c) a = 22.5". ( d )  a = 45". (e) a = 61.5'. 
(f) a = 80'. (8) a = QO", vertical. 
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(2) Descending $ow 

becomes more full. 

effect on the averaged flow. 
(3) Inclined pipes 

for which the averaged Nu has a maximum value. 

(i) The maximum velocity increases with the increase in Gr, and the velocity profile 

(ii) The influence of buoyancy on the turbulence energy considerably exceeds its 

(i) At least at the Gr and Re values investigated, there exists an inclination angle 

This work forms a part of the research sponsored by the Science Research Council 
under grant no. GR/A1 01780. The computer program was loaned by Concentration, 
Heat and Momentum Limited. 



400 A .  M. Abdelmeguid and D.  B. Spalding 

R E F E R E N C E S  

B m ,  H. 0.. HORBTEN, E. A. & C m ,  A. D. 1974 The distortion of turbulent velocity end 
temperature profiles on heating for mercury in a vertical pipe. Tram.  A.S.M.E. J .  H a t  
Tranafw 96, 162. 

C m ,  A. D., CONNOR, M. A. & BUHR, H. 0. 1973 Velocity, temperature and turbulence 
measurements in air for pipe flow with combined free and forced conveotion. Tram. 
A.B.M.E., J .  Heat Tramfer 95, 446. 

LAUNDER, B. E. & SPALDINQ, D. B. 1974 The numerical computation of turbulent flows. 
Comp. Me&. for App. Mech. &3 Engng 3 .  

OJALOV, M. S., ANAND, D. K. & DUNBAR, R. P. 1907 Combined forced end free turbulent 
convection in a vertical circular tube with volume heat source and constant wall heat 
addition. Tram.  A.B.M.E., J. Heat T r m f e r  89, 328. 

PATANKAR, S. V. & SPALDINQ, D. B. 1972 A calculation procedure for heat, mess and momen- 
tum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Tramjer 15, 1787. 

PE-OV, B. S .  1970 Turbulent flow and heat transfer in pipes under considerable effect of 
thermogrevitetion fomes. (Report presented at  seminar on Heat Transfer at Turbulent 
Free Convection.) Int. aentre Heat & Mum Transfer, Dubrovnik. 

PETUKEOV, B. S., POLYA~OV, A. F., KULESIEOV, V. A. & SHECKTER, Yu. L. 1974 Turbulent 
flow end heat transfer in horizontal tubes with substantial influence of thermogravitational 
forces. 4th Int. He& Transfer C m j .  Tokyo. 

PETWHOV, B. S., P O L Y ~ O V ,  A. F., SHEOKTER, Yo. L. & KULESHOV, V. A. 1976 Experimentel 
study of the effeot of thermogr8vitstion upon turbulent flow and heat transfer in horizontal 
pipes. (Report presented a t  seminar on Heat Transfer a t  Turbulent Free Convection.) 
I n t e m t d d  Osntrefor Heat & Mms Tranefer, Dubromik. 

Po~y&iOv, A. F. 1973 Transient effects due to thennogravity in turbulent and heat trensfer. 
High Temp. 11, 1. 

P O L Y ~ O V ,  A. F. 1974 Development of secondary free-convection currents in forced turbulent 
flow in horizontal tubes. J. Appl. Meoh. Tech. Phys., P M T P ,  5 .  

SKIAD~RESSIS, D. & SPALDINQ, D. B. 1977 Prediction of combined free end forced convection 
in turbulent Aow through horizontal pipea. Lett. Heat & Mass Tramfer 4, 36. 


